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1 Background

[ am interested in vertex operator algebras (VOA) and their representation theory, as
the underlying algebraic/categorical structure of two-dimensional conformal field theory
(CFT, we will omit ‘two-dimensional” hereafter). In particular, I am interested in the construc-
tion of tensor-categorical structure in module categories of vertex operator algebras. Here, the
‘modules’ I consider could be ‘twisted modules’ in certain sense. The theory of twisted module
is called the ‘orbifold’ theory.

Highly roughly speaking, a VOA is a Z-graded vector space V = ) _ V), together
with a particular element 1 € V| and a binary operation Y (—,z)—, called vertex operator,
whose outputs are V-coefficients formal Laurent series, i.e., Y(u,x)v € V((x)) for u,v €
V. Tt satisfies certain axioms, including the most important one, Jacobi identity, which
is an algebraic expression involving formal delta series. Although the notion of VOA is
highly sophisticated, it shares certain features with both Lie algebras and associative algebras.
Moreover, it representation-theorically behaves extremely interesting.

1.1 CFTs and VOAs

Quantum field theory (QFT) has become a unifying framework in modern mathematics,
providing deep conceptual bridges among geometry, topology, analysis, representation theory,
and tensor category theory, which has been more and more significant in modern physics and
mathematics. Topological field theory (TFT) and CFT are two types of QFTs that are
mathematically well defined and studied. It has been a long-standing open problem, since the
late 1980s, to construct chiral and full CFTs in the sense of Segal.

In TFT, the notion of vector space, Frobenius algebra, and modular tensor category pro-
vide the underlying algebraic/categorical structure of one, two, and three-dimensional TFT.
Analogously, the algebra of intertwining operators among modules for a VOA provides the
underlying algebraic structure of the chiral CFT. Therefore, the study of CFTs can be largely
converted to the study of VOAs and their representation theory.

Based on the results in [HL2], [HL3], [HL4], [H1], [H3], [H4], and [H5], Huang proved the
following theorem in [H6]:

Theorem 1.1. Let V' be a simple VOA satisfying the following conditions:

1. Forn <0, Vi) = 0; Vio) = C1; and as a V-module, V' is equivalent to its contragredient
V-module V.

2. Every lower-bounded generalized V -module is completely reducible.

3. 'V is Cy-cofinite.

Then the category of V -modules has a natural structure of modular tensor category in the sense
of Turaev [Tul].



1.2 Orbifold conformal field theory

Orbifold CF'Ts are CFTs constructed from known theories and their automorphisms. The
first example of orbifold CFT is the the moonshine module VOA V¥ constructed by Frenkel,
Lepowsky and Meurman [FLM1]-[FLM3] in mathematics. The automorphism group of V* is
the Monster finite simple group. Their construction of V¥ played a significant role in Borcherds’
proof of Conway—Norton Conjecture, profoundly relating number theory and finite group the-
ory. It did so by introducing a new string theory, which was later interpreted by physicists as
an “orbifold” theory. In string theory, the more generally systematic study of orbifold CFTs
was subsequently started by Dixon, Harvey, Vafa and Witten [DHVW1] [DHVW2]. See [H14]
for an exposition of the construction of orbifold CFTs using the approach of VOA theory.

It is natural to expect that Theorem 1.1 has generalizations in orbifold CFT. In [K3], Kirillov
Jr. stated that the category of g-twisted modules for a VOA V for ¢ in a finite subgroup G
of the automorphism group of V' is a G-equivariant fusion category. For general V', this is
certainly not true. The VOA V must satisfy certain conditions. Here is a precise conjecture
formulated by Huang in [H9]:

Conjecture 1.2. Let V be a VOA satisfying conditions 1,2,3 in Theorem 1.1, and let G be
a finite subgroup of Aut(V'). Then the category of g-twisted V-modules for all g € G is a
G-crossed braided tensor category.

We also conjecture that the category of g-twisted V-modules for all g € G is a G-crossed
modular tensor category in a suitable sense.

In the case that G is trivial, Conjecture 1.2 is true by Theorem 1.1. Thus the G-crossed
modular tensor category conjecture is a natural generalization of Theorem 1.1 to the category
of category of g-twisted V-modules for g € G.

In the case that the fixed point subalgebra V¢ of V under G satisfies the conditions in
Theorem 1.1 above, the category of V% modules is a modular tensor category. In this case,
Conjecture 1.2 can be proved using the modular tensor category structure on the category of
V& modules and the results on tensor categories by Kirillov Jr. [K1] [K2] [K3] and Miiger [Miil]
[Mii2]. In the special case that G is a finite cyclic group and V satisfies the conditions in The-
orem 1.1, Carnahan-Miyamoto [CM] proved that V¢ also satisfies the conditions in Theorem
1.1. Assuming that GG is a finite group containing the parity involution and that the category
of grading-restricted V¢-modules has a natural structure of vertex tensor category structure in
the sense of [HL1]|, McRae [Mc| constructed a nonsemisimple G-crossed braided tensor category
structure on the category of grading-restricted (generalized) g-twisted V-modules.

For general finite group G, the conjecture that the fixed point subalgebra V¢ of V under
(G also satisfies the conditions in Theorem 1.1 is still open and seems to be a difficult problem.
On the other hand, using twisted modules and twisted intertwining operators to construct
G-crossed braided tensor categories seems to be a more conceptual and direct approach. If
this approach works, we expect that the category of V¢-modules can also be studied using the
G-crossed braided tensor category structure on the category of twisted V-modules.

2 What I have done

In brief, I proved the associativity of twisted intertwining operators, under
some convergence and extension assumption. This is equivalent to a construction of
the associativity isomorphism in the G-crossed vertex/braided tensor category,



which is a main difficulty in proving Conjecture 1.2. (Another main difficulty is to prove the
assumptions I need; see [Ta].)
To achieve this, I have done the following:

e 2.1 Systematically developed a complex analytic approach to VOA theory (in
[DH] and [D])

The classical study of VOAs and their representation theory uses an algebraic approach
based on formal series. This algebraic approach has been fully developed in the last 40 years
and been used to successfully solve many problems. The Jacobi identity in the definition of
VOA is powerful enough to derive many important results.

In classical (i.e. untwisted) theory, the algebraic formulation is not enough to study prod-
ucts/iterates of more than one intertwining operator. We no longer have a Jacobi identity in this
case, essentially because the correlation functions are multivalued in all varibles, which means
one can no longer obtain a single-valued meromorphic 1-form on C. Therefore, coefficients in
expansions at different singularities cannot have a relation (i.e., the Jacobi identity) by simply
using the Cauchy formula. This is where Huang [H1] and Huang-Lepowsky-Zhang [HLZ4| had
to introduce certain complex analytic assumptions to go further. These assumptions must be
satisfied to have their result (i.e., the vertex tensor category and in particular, the braided ten-
sor category structure on the module category), and also were proved (for Cj-cofinite modules)
by Huang [H3].

Despite the involvedness of these complex analytic assumptions, their work ([HL2]-[HL4],
[H1], [H3]-[H6], and [HLZ1]-[HLZ7]) mainly used the algebraic approach. This is natural - one
should always use algebraic approach whenever there is a Jacobi identity, because althrough
often lengthy and technical, formal calculus is rather mechanical - one can get results by direct
and standard computation.

However, in the study of orbifold CFT, a systematic complex-analytic approach inevitably
needs to be developed. This is because even for the vertex operator acting on modules, there
are non-integer powers of x (and log x for g-twisted modules with infinite order automorphim
g). This causes an extra multivaluedness, which makes it impossible to write down a Jacobi
identity as the definition of twisted intertwining operators (see Section 2.2). Geometrically,
it is because we cannot have a single-valued meromorphic function even for products like
Y (v, z1)Y(wy, 29)ws. Instead, we have to use a duality as the definition of twisted intertwining
operator, which is a complex analytic statement.

The “definition” of the “complex analytic approach to VOA (orbifold theory)” could be:

Starting from the duality version of the definitions of (twisted) module and (twisted)
intertwining operator, develop the (twisted) representation theory of VOA, without
using formal delta function, Jacobi identity, and Cauchy formula.

Under this definition, because of its inevitability in the study of orbifold theory, we have
systematically developed the complex analytic approach.

e 2.2 Introduced the most general notion of twisted intertwining operator
(in [DH] and [D])

Intertwining operators among twisted modules (i.e. what we called twisted intertwining op-
erators) associated to commuting automorphisms of finite order appeared implicitly in [FFR]
and were introduced explicitly in [X] in terms of a generalization of the Jacobi identity for
twisted modules. This Jacobi identity works because in [X], only the case that the automor-
phism group is finite abelian is considered. However, what we want is a theory for nonabelian
group. In [H8|, Huang introduced a definition of twisted intertwining operators among mod-
ules twisted by noncommuting automorphisms. However, it turns out that this definition is not



general enough to study orbifold theory associated to a nonabelian group of automorphisms.

We have introduced the most general notion of twisted intertwining operator. This def-
inition of twisted intertwining operator is general enough for studying the orbifold theory
associated to nonabelian group of automorphisms. Note that to give the correct notion of
P(z)-tensor product of twisted modules, we need to use the most general twisted intertwining
operators. If we use only a certain special set of twisted intertwining operators as in [HS|
to define and construct the P(z)-tensor products, we would obtain a quotient of the correct
P(z)-tensor products.

Moreover, based on our definition of twisted intertwining operator, we have proved some
properties of twisted intertwining operators, which are essential for the construction of G-
braided vertex tensor categories.

¢ 2.3 Construction and an equivalent condition for the P(z)-tensor product (in [DH]
and [D])

For any z € C*, we have given the definition of the P(2)-tensor product W; Xp.) W5 of two
twisted modules W, and W5 using a universal property. We also gave an explicit construction
of Wi Mp(,y Wa by using the new notion of twisted intertwining operator.

Based on the explicit construction of Wy Mp(.) W5 mentioned above, in [DH], we have found
an equivalent condition of a functional A € (W; ® W3)* to be contained in (W Mp(.) Wa)'.
Denoted by GM,,.(G) the category of grading restricted generalized g-twisted module for g € G,
where G < Aut(V).

Theorem 2.1. Let the module category considered be GM,,(G). Suppose A € (Wy @ Wa)*.
Then A € (Wy Rpy Wa)' if and only if \ satisfies a suitable P(z)-compatibility condition and
a suitable P(z)-locally-grading-restriction condition.

(Remark: W, Xp(.) Wy is dependent on the module category that is considered.)

We note that in the untwisted case, a P(z)-compatibility condition and a P(z)-grading-
restriction condition (see [HL4] and [HLZ3]) play an important role in the proof of associativity
of intertwining operators (see [H1] and [HLZ5]).

Generalizing their idea of proving the associativity in the untwisted situation to our twisted
case has the following main obstruction. The P(z)-compatibility condition in [HLZ3] is purely
an algebraic statement, which fits the definition of intertwining operator using Jacobi identity,
but is invalid under our notion of twisted intertwining operator and the complex analytic
setting. To solve this problem, we have introduced a new formulation of P(z)-compatibility
condition, which is a complex-analytic statement. It looks very different from the algebraic
version of the P(z)-compatibility condition in [HLZ3]. (Whether they are equivalent when
the twisted modules considered are actually untwisted is still unclear, which is an interesting
unsolved problem.) The complex-analytic version of P(z)-compatibility condition serves the
same function as the algebraic one, in the sense that we still can prove Theorem 2.1 under our
complex analytic setting (See [DH|). Again, since our notions of twisted intertwining operator
and P(z)-compatibility condition are very different, the method of proving Theorem 2.1 is
entirely new.

In [D], we have introduced a P(z)-C-embeddability condition, where C is the category of
twisted V-modules. Then we have:

Theorem 2.2. Denote by C the module category that is considered. Suppose A € (W7 @ Wa)*.
Then A € (Wi Rpy Wa)' if and only if X satisfies both the P(z)-compatibility condition and
the P(z)-C-embeddability condition.



Theorem 2.1 and 2.2 are crucial for proving the associativity of twisted intertwining oper-
ators, because they offer a feasible way to determine whether a functional A € (W; ® Wy)* is
contained in the space (Wi Mp(,) W)

e 2.4 Proof of associativity of twisted intertwining operators (in [D])

Using P(z)-compatibility, Theorems 2.1/2.2, and all other tools that had been developed, I
have proved the associativity of twisted intertwining operators. The statement is roughly the
following:

Theorem 2.3. Fix z1, zo € C satisfying

0< ’Zl _22‘ < ’22| < ‘21’, (21)

T T

larg(z1) — arg(z2)| < BL larg(z; — 2z2) —arg(z)] < 5 (2.2)
Suppose that G < Aut(V'), and C is a category of g-twisted generalized V-modules for g € G.
If C satisfies certain conditions, then for any g1, 992,93 € G, and g1-, g2-, g3-, G19293-, J293-
twisted modules Wy, Wy, W3, Wy, My in C, and twisted intertwining operators Vi, Vo of types

(th&l), (W]ﬁ}%), there exist a g1go-twisted module My in C, and twisted intertwining operators

Vs, Vu of types (M‘;Vljlvg), (WY;@), such that

(W), Vi (w1, 21) Ya(ws, 22)ws) = (W, Vs(Va(wr, 21 — 22)wa, 22)w3) (2.3)
holds for any wy € Wy, wy € Wa, w3 € W, w), € Wj.

Note that for the associtivity of untwisted intertwining operators, the restriction (2.2) is not
needed. However, due to the multivaluedness nature of orbifold theory, (2.2) is needed, which
is a new phenomenon. When (2.2) does not hold, one can still find some twisted intertwining

operators )3, ), such that (2.3) holds. But their types could be ( théimg‘a)/s)), ( o (W1])W<2bh (WQ)),
3 1 2
for some h; € G, i =1,2,3,4.
As a direct corollary, we have the associativity isomorphism in the vertex tensor category.

Corollary 2.4. Fix zy, 29 € C satisfying (2.1) and (2.2). Suppose C is a category satisfying the
conditions referred to in Theorem 2.3. For any g1, 92,93 € G, and g1-, g2-, g3-twisted modules
Wy, Wy, W3 in C, we have the isomorphism

Wi Rp(.,) (Wa Wp,) Wa) — (W1 Rp(, ) Wa) Kp(.,) W, (2.4)
functorial in all three positions.

Together with the parallel transport isomorphism introduced in [HLZ7], we have the asso-
ciativity isomorphism in the G-crossed bairded tensor category:

Corollary 2.5. Suppose C is a category satisfying the conditions referred to in Theorem 2.35.
For any g1, 92,93 € G, and g1-, go-, g3-twisted modules W1, Wy, W3 in C, we have the isomor-
phism

Wi Mpay (We Wpay Ws) — (W1 Mpay Wa) Rpay Wi, (2.5)

functorial in all three positions.



3 Future Research Plan

e 3.1 Finish the construction of G-crossed vertex/braided tensor category

To be a G-crossed vertex/braided tensor category, not only the ingredients - associativity
isomorphisms, G-action and grading, G-crossed braiding isomorphism, etc, - are needed, certain
compatibility axioms including the pentagon/hexagon/triangle axioms also need to be satisfied.
After Corollary 2.4 and 2.5 have been proved, we have all the ingredients. The next step is to
prove these compatibility axioms.

We plan to complete this work in the near future as a joint project with my advisor Yi-Zhi
Huang, and Daniel Tan.

e 3.2 A generalized Jacobi identity for twisted intertwining operators
As mentioned in Section 2.1, unlike the untwisted case, when studying correlation function

induced by (wj,Y (v, z1)Y(wy, z2)ws), because of the multivalueness of Y (v, z1), one cannot
obtain a single-valued meromorphic 1-form on C. This is the geometric obstruction for getting
a Jacobi identity using the Cauchy theorem. However, one can have a branched covering space
E of C, such that the multivalued function (1-form) on C can be lifted to a single valued 1-form
on E.

E ——

l single valued lifting

N

@ multivalued C

As a generalization of the Cauchy theorem on compact Riemann surface, one has the
following theorem:

Theorem 3.1 (Global Residue Theorem). Let M be a compact Riemann surface, and let
S C M be a finite set of points in M, and w be a holomorphic 1-form on M \ S. Then
Z Res,(w) = 0. (3.6)
peS

Suppose )Y is of type (WVIVI}/Q), where Wy, Wy, W3, are g1-, go-, g1g2-twisted modules. If
(g1, 92) < Aut(V) is a finite group, to study (wj, Y (v, z1)Y (w1, z2)ws), the branched covering
space E can be taken to be a compact Riemann surface. This means that we can get a single-
valued correlation function on a compact Riemann surface so that we can use Theorem 3.1.
In this way, one can get a “generalized” Jacobi identity for twisted intertwining operator for
finite automorphism group (g1, g2). However, although this idea looks clear and feasible, some
difficulties seem to occur when (gi, go) is nonabelian. Details still need to be written down to
examine the feasibility.

The importance of this work is that many results in untwisted VOA representation theory
are proved using algebraic approach. The proof of these results under our complex analytic
setting is yet to be found. Once this work is done, it will be helpful for us to prove more results
in the complex-analytic setting. For the one among these results most related to my program,
see Section 3.3:

¢ 3.3 Proof of the convergence assumption

The products/iterates of untwisted intertwining operators among Cj-cofinite modules are
absolutely convergent and have the form of solutions of PDEs which have regular singular
points at certain points. This result was proved by Huang in [H3] using the algebraic approach
and regular singular differential equation theory. This is essentially the conditions referred to
in Theorem 2.3.



The original proof by Huang heavily relies on the Jacobi identity, which means it is im-
possible to directly generalize to our twisted case. Once the work in Section 3.2 is done, the
convergence assumption will hopefully be proved.

Remark 3.2. If it goes well, this work will be done by my colleague and friend, Daniel Tan.
If it turns out to be much more difficult than expected, I will be interested in doing this. For
finite abelian group of automorphisms, Tan has already had this result due to the fact that a
Jacobi identity can be derived in this case. The more difficult and also more interesting case is
finite (not necessarily abelian) group case.

¢ 3.4 Explore explicit examples of orbiford theory

Applying this whole theory to explicit examples will be very interesting. One of the explicit
examples worth trying would be affine VOAs V({,0). In [H13], Huang explicitly constructed
these Verma-type twisted modules for affine VOAs, and proved that these modules are equiv-
alent to suitable induced modules of the corresponding twisted affine Lie algebra or quotients
of such induced modules by explicitly given submodules. Therefore, we have many useful tools
to start explicitly studying the orbifold theory of affine VOA.

Also, we need to mainly explore non-abelian orbifold theories, since our theory works for
modules twisted by a non-abelian group. Gemiinden and Keller studied some orbifolds of
holomorphic lattice vertex operator algebras for non-Abelian finite automorphism groups G in
[GK]. Their work on these examples possibly offers a place where we can apply our theory.

e 3.5 Uniqueness conjecture of the moonshine module V*

Once Conjecture 1.2 is proved, it offers a strategy to study Frenkel, Lepowsky, and Meur-
man’s famous uniqueness conjecture of the moonshine module VOA V# which has a history
of over 40 years, and also is the last piece of the classification program of holomorphic VOAs
with central charge 24. Their conjecture is the following:

Conjecture 3.3 (Uniqueness conjecture of V%). Let V be a VOA satisfying the following three

conditions:
1. 'V is the only irreducible module for itself.
2. Viy = 0.

3. The central charge of V is 24.

Then V = V¥ (as VOAs).
As a weaker version of this conjecture, we have

Conjecture 3.4. Let V be a VOA such that it satisfies conditions 1,2,3 in Conjecture 3.3, and
conditions 1,2,3 in Theorem 1.1. Then V = V% (as VOAs).

The analogy between even lattices and (lattice) VOAs arose in one of the earliest literature
[FLM1], [FLM3] in VOA theory, which was generalized to the analogy between (positive defi-
nite) lattices and completely-extendable conformal intertwining algebras (intertwining operator
algebra) by Huang in [H15]. Under the philosophy of this analogy, Lepowsky announced, in a
conference in Palo Alto, that Conway’s proof of the uniqueness theorem of the Leech lattice
A could be natural place to find inspiration. Conway’s proof was based on the essential fact
that we have a natural embedding A — R?* (actually one has A — Q?*) from the lattice to
Euclidean space. Therefore, one can work within the Euclidean space rather than just the
lattice. The space R?*, as the ambient space of A, played a significant role in Conway’s proof.
To vaguely follow the same strategy as Conway, the first step is to find an ambient
structure for V which plays a similar role as the ambient space R* in Conway’s
proof. Then, we should explore whether we can do some similar things as Conway did.
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However, what makes the uniqueness conjecture difficult to handle is its nature of “No
(easy) ambient structure”.

First, the philosophy “adding modules to enlarge the algebra” is invalid now - every module
is just direct sum of copies of V itself. If we regard the vertex tensor category V-Mod as an
ambient structure of V', the ambient structure is as small as V' itself.

Second, suppose that V' is a VOA satisfying condition 1. in Theorem 1.1. If V(;) # 0,
then there is a natural Lie algebra g structure on V{;) with a natural invariant bilinear form.
Moreover, there is a VOA homomorphism V;(¢,0) — V', where V;(¢,0) is the affine VOA, and
¢ is some particular number determined by V. Therefore, we know that V' is a V;(¢, 0)-module,
which means V;(¢,0)-Mod can be regarded as an ambient structure of V. We can use the
well-studied affine VOA and its representation theory to study V. This has been a powerful
tool in proving the uniqueness theorem of the other 70 VOAs in the classification conjecture
of holomorphic VOAs with central charge 24. However, in Conjecture 3.3 and 3.4, we have
V(1) = 0, which makes this strategy invalid. This is the original reason for the depth of FLM’s
uniqueness conjecture of V.

To overcome the difficulty mentioned above, our strategy is the following. Roughly speaking,
we want to use the category of twisted modules of V' as the ambient structure. Although the
category V-Mod is trivial now, the category of g-twisted modules for some g € G < Aut(V)
should be a nontrivial G-crossed vertex tensor category. Since the moonshine module V¥ =
Vi@ (V)T is constructed using the Leech lattice VOA V, and its twisted module VI, if
we consider the category of g-twisted Vf-modules for ¢ € M = Aut(V?), it should contain
Vi, by a particular procedure of orbifolding. Therefore, if we start with an abstract VOA V'
satisfying conditions in Conjecture 3.4, the first step is to try to recover Vj in the M-crossed
vertex tensor category garenteed by Conjecture 1.2. This is hopeful to be done by using the
uniqueness theorem for the Leech lattice VOA. In this way, it would be possible to get, from the
abstract VOA V| an explicit VOA Vj using twisted V-modules. After realizing V) using the
twisted V-module category, V' is possible to be realized using twisted Vj-modules by reversing
the orbifolding procedure mentioned above. Then it is hopeful to use the well-understood
orbifold theory of V to study the uniqueness conjecture 3.4.

However, one of the hard problem for this strategy probably is to prove the existence of
even one nontrivial automorphism, because automorphisms are a piece of data we need to
build the orbifold theory. (Similar as above, if V(1) # 0, it is not hard to construct some
automorphisms of V. However, this is not the case for Conjecture 3.3/3.4.)
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